I B.Tech - II Semester – Supplementary Examinations DECEMBER 2024

ENGINEERING PHYSICS

(Common for EEE, ECE, CSE)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

$\mathbf{PART} - \mathbf{A}$

1.a)	Write any two differences between spontaneous emission
	and stimulated emission.
1.b)	Calculate the Numerical aperture and Acceptance angle of
	a given optical fiber, if the refractive indices of core and
	cladding are1.563 and1.498 respectively.
1.c)	Define space lattice and unit cell.
1.d)	What are miller indices? Explain its significance.
1.e)	Define dielectric polarizability and susceptibility.
1.f)	The magnetic permeability of a medium is 940×10^{-4} .
	Calculate its relative Permeability.
1.g)	State Heisenberg's Uncertainty Principle.
1.h)	Derive the expression for de-Broglie's wavelength.
1.i)	Show the variation of Fermi level with temperature in
	p-type semiconductor.
1.j)	Write any two applications of Hall effect.

PART – B

		rani – D			
			Max.		
			Marks		
		UNIT-I			
2	a)	Explain the construction and working of	7 M		
		He-Ne laser.			
	b)	What is population inversion? How can it be	3 M		
		achieved?			
OR					
3	a)	Explain the principle of an optical fiber.	3 M		
	b)	Distinguish between step index and graded index	7 M		
		optical fibers.			
UNIT-II					
4	a)	Derive the expression for inter planar spacing of	5 M		
		cubical crystal systems.			
	b)	Calculate the packing fraction of FCC structure.	5 M		
		OR			
5	a)	Explain Laue's method to determine the crystal structure.	6 M		
	b)	Derive Bragg's law of X-ray diffraction.	4 M		
UNIT-III					
6	a)	What is ionic polarization? Derive the expression for	6 M		
		ionic polarizability.			
	b)	Derive the Clausius-Mossotti equation in dielectric	4 M		
		materials.			
	OR				

_	\ \		< 3 C		
7	a)	Explain the origin of permanent magnetic moment in	6 M		
		materials.			
	b)	Explain the domain theory of ferromagnetism.	4 M		
	UNIT-IV				
8	a)	Calculate the eigen values and eigen functions of a	7 M		
		particle in one dimensional infinite potential well.			
	b)	An electron is bound in one dimensional infinite	3 M		
		potential well of width 1×10^{-10} m. Find the energy			
		values in the ground state and first two excited			
		states.			
	OR				
9	a)	Derive the expression for electrical conductivity	7 M		
		based on quantum free electron theory.			
	b)	Write any three demerits of classical free electron	3 M		
		theory.			
		UNIT-V			
10	Der	rive the expression for the density of holes in the	10 M		
	vale	ence band of an intrinsic semiconductor.			
	OR				
11	Exp	plain the concept of drift and diffusion currents and	10 M		
	der	ive the expression for the total current density in a			
semiconducting material.					
L	1	1			